首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   0篇
  国内免费   1篇
安全科学   1篇
废物处理   1篇
环保管理   2篇
综合类   5篇
基础理论   7篇
污染及防治   6篇
评价与监测   3篇
社会与环境   2篇
  2022年   1篇
  2019年   1篇
  2018年   1篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   6篇
  2012年   2篇
  2011年   1篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  1999年   1篇
  1990年   1篇
  1961年   1篇
排序方式: 共有27条查询结果,搜索用时 31 毫秒
11.
Natural biofilms were simultaneously grown on granite, polished granite, andesite, polycarbonate and Plexi-glass substrata for six weeks in the Tisza River. Biofilm production and abundance of algae were influenced by the substratum. Magnitude of the substratum effect was andesite相似文献   
12.
Urban ecological systems: scientific foundations and a decade of progress   总被引:9,自引:0,他引:9  
Urban ecological studies, including focus on cities, suburbs, and exurbs, while having deep roots in the early to mid 20th century, have burgeoned in the last several decades. We use the state factor approach to highlight the role of important aspects of climate, substrate, organisms, relief, and time in differentiating urban from non-urban areas, and for determining heterogeneity within spatially extensive metropolitan areas. In addition to reviewing key findings relevant to each state factor, we note the emergence of tentative "urban syndromes" concerning soils, streams, wildlife and plants, and homogenization of certain ecosystem functions, such as soil organic carbon dynamics. We note the utility of the ecosystem approach, the human ecosystem framework, and watersheds as integrative tools to tie information about multiple state factors together. The organismal component of urban complexes includes the social organization of the human population, and we review key modes by which human populations within urban areas are differentiated, and how such differentiation affects environmentally relevant actions. Emerging syntheses in land change science and ecological urban design are also summarized. The multifaceted frameworks and the growing urban knowledge base do however identify some pressing research needs.  相似文献   
13.
Red mud is highly alkaline (pH 13), saline and can contain elevated concentrations of several potentially toxic elements (e.g. Al, As, Mo and V). Release of up to 1 million m3 of bauxite residue (red mud) suspension from the Ajka repository, western Hungary, caused large-scale contamination of downstream rivers and floodplains. There is now concern about the potential leaching of toxic metal(loid)s from the red mud as some have enhanced solubility at high pH. This study investigated the impact of red mud addition to three different Hungarian soils with respect to trace element solubility and soil geochemistry. The effectiveness of gypsum amendment for the rehabilitation of red mud-contaminated soils was also examined. Red mud addition to soils caused a pH increase, proportional to red mud addition, of up to 4 pH units (e.g. pH 7 → 11). Increasing red mud addition also led to significant increases in salinity, dissolved organic carbon and aqueous trace element concentrations. However, the response was highly soil specific and one of the soils tested buffered pH to around pH 8.5 even with the highest red mud loading tested (33 % w/w); experiments using this soil also had much lower aqueous Al, As and V concentrations. Gypsum addition to soil/red mud mixtures, even at relatively low concentrations (1 % w/w), was sufficient to buffer experimental pH to 7.5–8.5. This effect was attributed to the reaction of Ca2+ supplied by the gypsum with OH? and carbonate from the red mud to precipitate calcite. The lowered pH enhanced trace element sorption and largely inhibited the release of Al, As and V. Mo concentrations, however, were largely unaffected by gypsum induced pH buffering due to the greater solubility of Mo (as molybdate) at circumneutral pH. Gypsum addition also leads to significantly higher porewater salinities, and column experiments demonstrated that this increase in total dissolved solids persisted even after 25 pore volume replacements. Gypsum addition could therefore provide a cheaper alternative to recovery (dig and dump) for the treatment of red mud-affected soils. The observed inhibition of trace metal release within red mud-affected soils was relatively insensitive to either the percentage of red mud or gypsum present, making the treatment easy to apply. However, there is risk that over-application of gypsum could lead to detrimental long-term increases in soil salinity.  相似文献   
14.
The objective of this work was threefold. Firstly, this paper intends to introduce four microbial toxicity screening methods (Bacillus subtilis agar diffusion method, Azotobacter agile and Pseudomonas fluorescens dehydrogenase enzyme inhibition tube test, and Photobacterium phosphoreum contact toxicity test) for the investigation of contaminated solid samples such as soil and sediment. Secondly, this work was carried out to prove that both soil characteristics and chemical form of contaminants influence the bioavailability of contaminants and alter the toxicity of soil sample considerably. Thirdly, the sensitivity of the above mentioned four biotests to different contaminants of the soil (heavy metals, organic compounds) was determined and compared. The data evaluation was processed by computer aided statistical methods such as cluster, correlation and principal components analysis by the use of StatgraphicsR.

According to cluster analysis carried out separately for chemical data and biological data, we observed that those samples that have similar chemical composition do not show similar toxicity, which is probably due to different bioavailability of contaminants, the impacts of soil characteristics as well as interaction of contaminants. According to the investigation of sensitivity of the examined four biotests the following conclusion could be drawn: P. phosphoreum and A. agile tests are similar in the sense that they are sensitive to Cu to a large extent and also to PAHs and hydrocarbons (CH) to a lesser extent. B. subtilis test corresponds well with P. fluorescens test method since both tests give good correlation with heavy metals. Neither B. subtilis nor P.fluorescens biotests are sensitive to organic soil contaminants such as PAH and CH.  相似文献   
15.
The interaction of heavy metals (HgCl2, CdCl2, CuCl2, PbCl2 and ZnCl2) and neurotransmitters (ACh, 5HT and DA) was studied on the excitable membrane of identified neurons of Lymnaea stagnalis and Helix pomatia. It was shown that,
  1. The excitability and chemosensitivity of molluscan neurons were modified under the influence of the heavy metals Hg2+, Cd2+, Cu2+, Pb2+ and Zn2+.
  2. Change in excitability to transmitters occurred as a potentiation or depression of the evoked response both in duration of membrane polarization and in frequency of spike activity.
  3. The chemosensitivity changes in various ways, namely:
  4. excitatory effect was totally eliminated;
  5. one component of the effect was depressed.
  6. Different neurons may show different reactions to the same heavy metal.
  7. There were differences in the effects of various heavy metals. Hg2+ has a more generalized effect than Cd2+; Cu2+, Pb2+ and Zn2+ were less effective in a number of neurons. The heavy metal effect was dose dependent, too.
  8. Both inward and outward currents, which were evoked by neurotransmitters or voltage induced, were modified in most of the tested neurons. Both an increase and decrease of the membrane permeability occurred in different neurons in response to the same or different heavy metals.
  9. The changes can be interpreted as a result of
  10. direct effect on specific ionic channels;
  11. modification of receptors binding ACh, 5HT, or DA;
  12. modification of intracellular processes responsible for the regulation of membrane permeability.
  相似文献   
16.
An integrated assessment of biological activity and ecotoxicity of fluvial sediments in the Marcal river catchment (3078 km(2)), western Hungary, is presented following the accidental spill of bauxite processing residue (red mud) in Ajka. Red mud contaminated sediments are characterised by elevated pH, elevated trace element concentrations (e.g. As, Co, Cr, V), high exchangeable Na, and induce an adverse effect on test species across a range of trophic levels. While background contamination of the river system is highlighted by adverse effects on some test species at sites unaffected by red mud, the most pronounced toxic effects apparent in Vibrio fischeri bioluminescence inhibition, Lemna minor bioassay and Sinapis alba root and shoot growth occur at red mud depositional hotspots in the lower Torna Creek and upper Marcal. Heterocypris incongruens bioassays show no clear patterns, although the most red mud-rich sites do exert an adverse effect. Red mud does however appear to induce an increase in the density of aerobic and facultative anaerobic bacterial communities when compared with unaffected sediments and reference sites. Given the volume of material released in the spill, it is encouraging that the signal of the red mud on aquatic biota is visible at a relatively small number of sites. Gypsum-affected samples appear to induce an adverse effect in some bioassays (Sinapis alba and Heterocypris incongruens), which may be a feature of fine grain size, limited nutrient supply and greater availability of trace contaminants in the channel reaches that are subject to intense gypsum dosing. Implications for monitoring and management of the spill are discussed.  相似文献   
17.
Journal of Polymers and the Environment - In this study ultrasonic assisted extraction was applied to obtain film forming mucilage from Plantago psyllium seed husk flour. The ultrasonically...  相似文献   
18.
Red mud, the by-product of aluminum production, has been regarded as a problematic residue all over the world. Its storage involves risks as evidenced by the Ajka red mud spill,an accident in Hungary where the slurry broke free, flooding the surrounding areas. As an immediate remediation measure more than 5 cm thick red mud layer was removed from the flooded soil surface. The removed red mud and soil mixture(RMSM) was transferred into the reservoirs for storage. In this paper the application of RMSM is evaluated in a field study aiming at re-utilizing waste, decreasing cost of waste disposal and providing a value-added product. The purpose was to investigate the applicability of RMSM as surface layer component of landfill cover systems. The field study was carried out in two steps: in lysimeters and in field plots. The RMSM was mixed at ratios ranging between 0 and 50% w/w with low quality subsoil(LQS) originally used as surface layer of an interim landfill cover. The characteristics of the LQS + RMSM mixtures compared to the subsoil(LQS) and the RMSM were determined by physical–chemical, biological and ecotoxicological methods. The addition of RMSM to the subsoil(LQS) at up to 20% did not result any ecotoxic effect, but it increased the water holding capacity. In addition, the microbial substrate utilization became about triple of subsoil(LQS) after 10 months. According to our results the RMSM mixed into subsoil(LQS) at20% w/w dose may be applied as surface layer of landfill cover systems.  相似文献   
19.
A soil column experiment was set up to investigate the effect of red mud from Ajka (Hungary) on a typical soil profile from the affected area. The chemical changes caused by the red mud leachate and the effects of these changes on living organisms were assessed. Ecotoxicological tests were performed with Vibrio fischeri, Sinapis alba and Folsomia candida and the number of aerobic heterotrophic microorganisms was determined. The total, plant-available, exchangeable and water-soluble fractions of Na, Mo, Cu and Cr increased in the soil, mostly owing to their leaching from the red mud layer, but partly to the increase in the pH and DOC concentration. The chemical changes only had significant effects on the test organisms in the 0–30 cm soil layer, except for F. candida, which also had a lower survival rate in the 30–50 cm soil layer. No severe toxic effects were detected in the test organisms; in fact a stimulating effect was revealed for the aerobic heterotrophic cell number and for S. alba germination. However, the red mud itself was toxic, so the ecotoxicological tests justified the removal of red mud from the soil surface after the disaster.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号